测绘新闻

测绘新闻

首页 > 测绘新闻 > 明察地壳毫末之变——探访中国大陆构造环境监测网

明察地壳毫末之变——探访中国大陆构造环境监测网

2019-04-15 热度:4081 ℃

  青藏高原是升了还是降了?周边国家发生的大地震,对我国有哪些影响?台风到来前后,大气中的水汽变化大吗?大灾发生之前电离层是否有变化?山体滑坡变形与气象因素有多大的相关性?……

  科学地回答这些问题首先需要数据。数据从哪里来?必须从观测中来。

中国大陆构造环境监测网络

  这正是中国大陆构造环境监测网络(以下简称陆态网络)诞生的缘由——在全国建数百个基准站和数千个流动观测点,实时获取全国地壳运动、重力场变化、断裂带微动态变化、电离层电子密度变化、大气可降水含量变化等情况,把那些从前只能用“大概、也许、可能”的回答变成详实精确的数据。

  上天下地入海,观测网大显身手

  中国地震台网中心的办公楼里,挂着一张1999—2017年度“中国大陆地壳运动水平速度场”图,密集的矢量箭头标示出地壳运动的方位,代表着中国大陆相对于欧亚板块运动的方向和大小,多年以来我们对此只有大致概念,而现在我们掌握的数据越来越精确了。

  这些数据的来源正是陆态网络工程,它是我国迄今为止建设规模最大、观测精度最高、数据质量最佳的国家级地壳运动观测骨干网络,覆盖了中国大陆约95%的国土。最近20多年来,观测点的持续稳定运行,为我们更清晰地了解中国地壳形变情况配上一副高精度的“显微镜”。

  2011年,日本9级大地震,造成我国东北和华北地区产生毫米至厘米级的同震水平位移, 最大值为35毫米;2015年,尼泊尔8.1级大地震,造成我国西藏地区毫米至厘米级的同震水平位移。“九寨沟地震、海棠台风、温比亚台风等等,我们也获得了非常详实的数据。”中国地震台网中心主任王海涛向科技日报记者介绍说。

  详实丰富的基础数据,不仅可以大大提升我国对大地震的监测预报能力,更重要的是可以服务于地球科学研究、大地基准框架建立、气象预报预警、电离层监测、海平面监测和高精度智能导航等多个领域,同时在航空、航海、公路、铁路、农业、矿业、环境、公共安全等领域应用前景广阔,从而激发可观的社会经济效益。

  从城市到荒野,上千个观测点是怎么建起来的

  众所周知,观测数据的起步就是科学合理地布点和建设。国土辽阔,有人口密集的城市,也有人烟稀少的荒野,更有人迹罕至的无人区。从1997年第一期工程开始,该重大工程的建设持续了14年,在全国范围内建成260个不同采样率的连续GNSS观测站、30个连续重力站、3个超导重力站、3个并置甚长基线干涉测量站(VLBI)、6个并置人造卫星激光测距站(SLR)、2000个流动GNSS观测站(RTK)、近1000余个流动重力观测站。

  “我们会根据不同地区构造特点和需求,建设不同类型的站点,6个部委1500多位科学家和技术人员通力协作完成了这项国家重大科技基础设施。”从十几年前开始,中国地震台网中心地壳运动观测台网部主任张锐和他的同事们一直都是这项重大工程的关键落实人,经历了站点从设计勘选到全面建设乃至运营维护的全过程。“有许多观测点修建在荒芜人烟的地区,实施过程和后期的维护都很不容易,一方面尽量做到站网布局设计更科学合理,另一个方面使用智能化的设备和创新性的管理方法。”

  在这一标准下,陆态网络不仅实现了建站布网的科学化技术流程、快速实时处理和高精度事后数据处理技术,还建成了一套完整的无人值守、远程监控、自动报警和在线故障处理系统。

  从数据到科学,共享不是“说说而已”

  数据是获得科学结论的第一步,但是怎么用好数据却是一门大学问。

  陆态网络项目由中国地震局、中国科学院、自然资源部、中国气象局和教育部等6个部门联合实施。“虽然是工作领域完全不同的6个部门,但是在这个项目的实施上却真正做到了整齐划一,共建共享。”项目团队认为这是项目实施中最值得骄傲的一点。工程一直采取“统一设计、统一规程、统一进度、统一监理、统一验收,分级实施、部门负责”的管理措施,到目前为止,全国近2000个共享站点的数据线上线下均可传输至中心,相关的地震、测绘、气象等行业,高校、院所、科研机构以及其他申请单位都可以申请使用这些数据,产出丰富的科学研究成果,并服务于国民经济建设诸多领域。

  在知名学术论文网站中国知网上,与陆态网络相关的论文有上千篇。根据项目组的官方数据,仅利用该工程观测数据完成的论文就已超过500余篇,其中100余篇发表在SCI系列的刊物上,如国内的《中国科学》《科学通报》及国外的Science、Nature和JGR等权威杂志,并出版科学专著3册。

  陆态网络的建成使我国对地壳运动的监测在空间和时间上有了大幅提升,观测效率提高了几十倍,这一方面是有赖于数量众多、布点科学的站点建设,另一方面有赖于大范围和时空密集的地壳运动数据为科学研究提供了丰富的基础数据资源,而深度挖掘数据本身的科学和应用效益,以及及时、科学、有序的共享机制才是这些数据最终“发光发热”的关键。

TAGS:

更多相关

徕卡助力冬奥 3D压雪让场地更精准 更高效 更智能

徕卡助力冬奥 3D压雪让场地更精准 更高效 更智能

  万众瞩目的2022北京冬奥会即将开幕,各国运动员将在这里进行精彩绝伦的表演,展现自己的精彩。其中云顶滑雪公园赛场,有自由式滑雪空中技巧、雪上技巧、U型场地、坡面障碍技巧、单板平行大回转、障碍追逐6...

脚步丈量能否被无人机测绘“无情”取代

脚步丈量能否被无人机测绘“无情”取代

  随着空间技术、计算机技术和信息技术的发展,人类实现了从空中和太空中观测地球的理想,遥感正是实现这一理想的利器。通过有人飞机航空遥感和卫星遥感的方式,获取地球表面的信息,不仅成本昂贵,也受到回归周期...

CGCS2000坐标系与WGS84区别介绍

CGCS2000坐标系与WGS84区别介绍

CGCS2000(ChinaGeodeticCoordinateSystem2000)和WGS84(WorldGeodeticSystem1984)是中国和全球广泛使用的两种不同的大地坐...

中海达RTK如何进行土方计算

中海达RTK如何进行土方计算

使用中海达RTK可以帮助我们进行基本的土方计算,中海达RTK进行土方计算的一般流程如下:1.数据采集:-使用RTK设备(如无人机、手持终端等)在待测区域内进行精确的三维坐标测量,收集大量的地面点数...

RTK控制点测量攻略分享,新手秒变高手!

RTK控制点测量攻略分享,新手秒变高手!

  在RTK进行控制点测量时,为了提高测量的精度,避免人为误差,需要用到“控制点测量”功能。  RTK控制点测量操作攻略  首先用支架将移动站固定在控制点上,对中整平。打开手簿的工程之星5.0软件主界...

中海达iBEAM 8140P浅水多波束测深仪

中海达iBEAM 8140P浅水多波束测深仪

中海达iBEAM8140P浅水多波束测深仪:高效精细水下地形测量的利器在现代海洋测绘、内陆水域调查和水利工程领域,对水下地形进行高精度、高效率的测量是至关重要的基础工作。中海达集团推出的iBEAM...

RTK解决方案:打开全新的定位体验

RTK解决方案:打开全新的定位体验

RTK解决方案:打开全新的定位体验RTK(Real-TimeKinematic)是一种基于全球导航卫星系统(GNSS)的高精度定位技术,为各行各业提供了更加准确和可靠的位置信息。无论是土木工程、测绘...

低空无人机测绘:高效、精确、广泛应用的新兴技术

低空无人机测绘:高效、精确、广泛应用的新兴技术

随着科技的不断发展,无人机的应用已经变得越来越普遍,如今已经不仅仅是军事和安防领域的专属工具,而是在民用领域得到了广泛的应用。其中,低空无人机测绘也被越来越多的人所关注和采用。作为一种新兴的测绘方法,...